

γ-Ray Loudness and the Parsec-Scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

Matt Lister
Purdue
University

Acknowledgements

Fermi-LAT collaboration

MOJAVE collaborators:

- M. Lister (P.I.), N. Cooper, B. Hogan, S. Kuchibhotla,
 J. Richards (Purdue)
- T. Arshakian, C.S. Chang, T. Savolainen, J. A. Zensus (Max Planck Inst. for Radioastronomy, Germany)
- M. and H. Aller (Michigan)
- M. Cohen, T. Hovatta, A. Readhead (Caltech)
- D. Homan (Denison)
- M. Kadler, M. Bock (U. Erlangen-Bamberg, Germany)
- K. Kellermann (NRAO)
- Y. Kovalev (ASC Lebedev, Russia)
- ► E. Ros (Valencia, Spain)
- A. Pushkarev (Pulkovo, Russia)
- N. Gehrels, J. Tueller (NASA-GSFC)

The MOJAVE Program is supported under NASA Fermi Grant NNX08AV67G and NSF grant 0807860-AST.

Monitoring

Of

Jets in

Active Galaxies with

VLBA

Experiments

Very Long Baseline Array

Overview:

> Selection effects are the bane of blazar studies

- > Goals of this study (Lister et al. 2011 ApJ 742, 27) :
 - Assemble complete γ-ray & radio flux-limited AGN samples for study with the VLBA
 - Compare pc-scale radio jet and γ-ray emission properties
 - What can we learn about beaming in different regimes and in different blazar classes?

MOJAVE Bright AGN Sample

Complete for:

- dec. > -30°, |b| > 10°
- 1LAC >100 MeV energy flux above 3x10⁻¹¹ erg s⁻¹ cm⁻²

OR

- 15 GHz VLBA flux density has exceeded 1.5 Jy at any time during 11month Fermi 1LAC period
- Only one missing (unassociated) source: in top left corner region
- 173 AGNs in total, 48 are both radio- and γ-ray selected (top right corner)

Lister et al. 2011, ApJ 742, 27

Redshift distributions

- γ-ray selected blazars have an additional sub-population of low-redshift HSP BL Lacs that are intrinsically very bright in γrays
- the brightest y-ray and radio-selected quasars have similar redshift distributions.

y-ray Loudness

- Define loudness as ratio of γ-ray to 15 GHZ VLBA radio luminosity
- Lowest luminosity BL Lacs (HSPs) all have high γ-ray loudness (due to SED peak location)
- LAT-non-detected AGNs all have low γ-ray loudness due to sample selection bias (omits radio-weak--γ-ray weak sources)

Synchrotron peak: a key blazar parameter

Slide from Gino Tosti; FMJ 2010

y-ray loudness and the Sync. peak

- > 0528+134: Low-spectral peaked FSRQ at z=2
- Moderate apparent γ-ray to radio luminosity ratio

y-ray loudness and the Sync. peak

- Mk 421: High-spectral peaked BL at z = 0.033
- > Larger apparent γ-ray to radio luminosity ratio

Pc-scale radio flux drops with increasing v_{peak} for BL Lacs

γ -ray loudness increases with v_{peak} for BL Lacs

Synchrotron peak: a key blazar parameter

Slide from Gino Tosti; FMJ 2010

y-ray loudness versus y-ray hardness

y-ray loudness versus y-ray hardness (BLL only)

- Photon index is well correlated with Compton peak location (LAT team, ApJ 716,30)
- Should this trend exist if the γ-ray and pc-scale radio jet emission are fully independent?
- BLL have lower avg.
 Compton
 Dominance values
 than FSRQ (Giommi et al. arXiv:1108.1114)

Trend is continuous from HSP to LSP

Parsec-scale radio core compactness vs. v_{peak}

- Radio core compactness (brightness temperature) is strongly affected by beaming and jet activity level
- FSRQ show no trend at all between γ-ray loudness and core compactness, reflecting wide intrinsic range of these two properties
- Low compactness level of HSP radio cores is suggestive of lower Doppler beaming factors

Variability Doppler factors: Tornikoski et al. 2011

Summary

- Bright BL Lacs (but not FSRQ) display several trends:
 - > γ-ray loudness positively correlated with synchrotron SED peak freq.
 - > pc-scale radio emission correlated with high energy SED peak
 - > in the radio, HSP BL Lacs do not show high compactness, high variability, high core linear polarization, or high superluminal speeds
- > Radio/γ-ray correlations are suppressed in FSRQs because of wide range of Compton Dominance values
- > Simplest current explanation for brightest BL Lacs:
 - lower Doppler factors for the HSPs
 - > SSC origin of y-rays favored over ECS
 - ➤ tightness of trends suggest a limited range of SED shape & Compton Dominance within the bright BL Lac population (needs further verification with high quality simultaneous SED data)

Backup slides

High-spectral-peaked blazar (unbeamed SED)

SSC model predicts similar change in both SED peaks when jet emission is beamed

High-spectral-peaked blazar (beamed SED)

For the SSC model, y-ray loudness is more affected by SED peak location than beaming (BL Lacs)

Low-spectral-peaked blazar (beamed SED)

In the ECS model, y-ray loudness is more strongly affected by beaming than SED peak location (FSRQ)

What's next:

- Do these trends hold for weaker blazars?
 - Parsec-jet properties of all 1FGL AGN associations
 - 8 GHz VLBI survey underway by Kovalev, Petrov, et al.
- Pc-scale jet speeds of HSP and low-luminosity AGN
 - > MOJAVE-2 program underway
- Full SED information on brightest AGNs
 - > Planck AGN survey
 - > E. Meyer Ph.D. thesis

VLBA core polarization vs. v_{peak}

Jet speed vs. pc-scale radio luminosity

► Lister et al., in prep.

OVRO radio variability level versus v_{peak}

Five factors determine y-ray jet brightness:

→ Relative Importance

1. Intrinsic jet speed

2. Viewing angle

3. Location of synchrotron SED peak

Doppler

factor

4. Activity state of jet

5. Proximity to Earth

Predictions of the beaming model

A. External-photon Compton scattering models predict more beaming in gamma-rays than in radio regime

- → extra Lorentz transformation between jet frame and external seed photon frame (e.g., Dermer 1995)
- → may apply to flat spectrum radio quasars (FSRQ)

B. High-spectral peaked jets in gamma-ray samples:

- → intrinsically much brighter in gamma-rays
- → don't need to be as highly beamed as the low-peaked quasars
- → all HSPs are BL Lacs, where synchrotron self-Compton applies

Doppler beaming

Unbeamed Y-ray lum.

Unbeamed radio luminosity

Doppler beaming

(Synchrotron self-Compton)

Beamed Y-ray lum.

Beamed radio luminosity

Doppler beaming

(External self-Compton)

Beamed Y-ray lum.

Beamed radio luminosity

Poster: Lister 2007, 1st Fermi Symposium

- → Gamma-ray loudness spans at least 4 orders of magnitude in the brightest blazars
- → higher mean for BL Lacs vs. quasars

